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When Liapunov’s direct method is used to study the stability of nonlinear systems 
and attempts are made to construct a Liapunov function with a derivative of con- 
stant sign or sign-definite, serious difficulties often occur. In the present paper a 
method is proposed for studying the stability of autonomous systems wherein use 
is made of an auxiliary function 1’ (x) . The method is not connected with the 
conditions for or (x) and its derivative with respect to time to be of constant sign 
or sign-definite. Instead, the function Y (x) along the trajectories of the system 
under study is required to satisfy a second order linear differential equation and 
certain boundary conditions. A theorem for the existence of the function V (x) 
is proved and an effective method is given for constructing it is the solutionof a 
Dirichlet problem for a degenerate elliptic operator of a special type : this makes 
it possible to obtain ‘v (x) numerically with the help of a computer. The function 
V (x) can be used, not only for the study of stability, but also to determine regions 
of attraction and to obtain the invariant sets of autonomous systems. in particular, 
the limit cycles of second order systems. 

1. We consider the system of equations of a perturbed motion 
x’ = f (x) (1.X) 

defined in some bounded domain D C R”’ and such that f (x) E cc’) (D). Here, 
and in what follows, by 0”) (D) we shall mean the space of functions which have in D 
continuous partial derivatives to order k inclusive, and by flk+aI (D) we shall mean 
the space of functions which have in D partial derivatives of arder k which satisfy a 
H&lder condition with exponent 0 ( a c i. Let 8 = (x : 1 x I\< r} c D, and let 
I: be the boundary of 9. The intrinsic norm in R”’ will be denoted by 1. j , 

We introduce now an auxiliary system of equations for the perturbed motion 

x0 = h (x) (1.2) 
where 



634 V.A.Kol'chinskii 

h (x) = ‘PI (4 f w + ‘p2 lx) x (1.3) 

Here ‘pI (x) and cp2 (x) are scalar matrices, their diagonal elements being defined as 
follows : 

1 

1, llxll=Q-S 

(ppfi(x)=: exp - Ilxll-r+Wi [ ( 
Ilxll-r+4 ’ , )I r-E<Jlxf<r- $E 

0, r-$E<lPll 

i 

0, b+3-4 
cpf(x)=; exp - ,!~1;-ii;r;e ,"J r-E<llxll<r I ( 

1, r\<llxll 
where i = 1, 2, . . ., m, and E is a sufficiently small positive number. 

Lemma 1.1, If the trivial solution of the system (1.2) is stable, a~mptoti~lly 
stable. or unstable, then the trivial solution of the system (1.1) is, respectively, stable, 
asymptotically stable, or unstable. 

Proof. By virtue of the choice of functions v1 (x) and ‘ps (x) in the sphere of radius 
r - E , we have f (x) f h (x), The assertion of the lemma is therefore an immediate 
consequence of the coincidence of the trajectories of the systems (1-l) and (1.2) in the 
sphere (1 x]/ < I - 5 and of the definitions of stability, asymptotic stability and ~stabi~~ 
in the sense of Liapunov [I. 21. 

Let us assume that in 5t U ): there exists a function V (x) E U2) ($2) possessing 
the following properties (k and g are constants) : (A) V (0) = 0 ; (B) ‘c7” (x) = 

kV (x) . (k > 0) ; (Cl V (x) = g (g > 0, x E Z); and (D) I V (x) I < g, if 
x E a2.e 

Here, and in what follows, we shall understand v’ (x) to mean the first total deriva- 
tive of the function V (x) with respect to time at the point x by virtue of the system 
(1.2). and by v” (x) we shall mean the second total derivative. We introduce the fol- 
lowing notation : 

x0 = x (a, v, = ‘F’ (x,), v; = V’ (x0), k = -f- k-92 

p* (x) = li, [V (x) -t- hTr’ (x)1 

HI = {x: p, (4 > OJ, Hz = {x : p, (X) = 0) n {x: P- (x) # O} 

Ha= ix : p+ Ix) = 0) n (x : P- (x) = O}, If* = {x : P, (x) < 0) 

Lemma 1.2. 1) If x0 E_ Ix,, the trajectory x (t) with the initial condition x0 
reaches the boundary of the domain 52 in a finite time; 

2) If x0 E. W2, then x (t) E Q for t > to and Iimt-, x (t) E Ha; 
3) If x0 CG H,,then x (2) E Ha for t > tcr; 
4) The set B4 is empty. 

(By the expression limt,, x (t) E H, we mean the following : for arbitrary E > 0 

we can find a T (E) > t, such that for all t > T (E) we shall have Q (x(t), Ha)< a.) 
Proof. A solution of the equation v” (x) = kV (x) along the trajectory x (t) has 

the form 
v (t) = v (X (t)) = P_ (x0) exp ( - 9) -!- P, (x0) exp ( + ) 0.4) 
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Let xg E H,. Then P, (xc) > 0 and limt,, Y (t) = +- ou. Therefore, by Pm- 
perty D, we can find a 2’ > to such that x (2*) e 2. lot x0 E Hs. Then P, (x& 
0 and P_ (x8) = Ifn. Therefore, V (t) = V, exp f-0 - h) f hl ami. by proper- 
ties C and D, x (8) E fz for t > t,. Ubvimsly. limt,, V ft> = lim,, v’ ft) = 0, 
and hence, we have link,,, PC (x (6) = Jim+,P- (x ft)> = V. Therefore, by virtue of 
the continuity of the functions P+ (x) and P- (x) a we have lim,, x (t) E frr,. let 
KgElf,,Then P+fx,)L-P_(~)=Oand P(t)== v’(t)=Vfor t),t, .byvirtueof 
(1.4). It then follows that for t > t0 , P+ (x (t)) 5 P_ fx (t)f = 0 and x (t) E Hs far 

t> tr* 
Let 4 E ~4. It is readily seen that if P- (x0) < 0, then at some instant ti the fuuc- 

tion V @) attains a maximum equal to - fP$ - ?$Vb’%& - g , by virtue of Property 
D, By virtue of Property C, x (f,f E 8. Since it follows &om fl+ 4) that V (f) can have 
only one extremum, we conclude that the function Y ($1 is rno~to~~l~ decreasing on 
the semi-axis [t?, -j- 00) I But if P- (xnt > 0, then B (8) decreases monotonically on 
the semi-axis Ito, i- co). In both cases, by virtue of the Properties C and D, we have 
x (8) E 62 for t > tQ , and consequently, 1 V (x (t)) 1 f g for t > to. However, in the 
case x, E ~$4 , it follows from (1.4) that lkn,,, V (t) = - 00. The resulting contra- 
diction is a consequence of the assumption that the set & is not empty. 

Theorem 1.1. Ifa ~>~~nbef~~dsuch~at~e~t~x~~~ 1x1~ 
6) C Hs, then the trivial solution of the system (l-2) is a~rn~~~lly stable, 

Proof. From the definition of the set .8s, the Property A, and the obvious equality 
h (0) = 0 , it follows that in the sphere 1 x 1 < 6 the functions V (x) and i” (x) are 
of sip-de~nite~ whereupon the ineq~~~ I’ (x)Y (x) < 0 is satisfied for x # 0 e 

Thus, in this sphere the function V (x) is a I&qmm~~ function satfsfying the conditions 
of the theorem concerning asymptotic stability in the case of a steady motion (see [ZJ). 

Theorem 1.2, If x = 0 is the unique limit point of the set Hz ~longing to 
the set EIs, then the set Hs is a domain of attraction for the trivial solution of system 

(1*2X 
Proof. 

0) > 0. 
If the cenditlons of the theorem are satisfied, then the distance Q (Hz, Ha\ 

Therefore, by virtue of lemma 1,2, au arbitrary trajectory X (t), beginning 
in the set Hz, can only tend towards the origin, and limt,, z (t) = 0. 

Consider now two sequences of positive numbers (ri) and (Sj}, tending to zero, 
We denote Qi = {x : f/ x /j < ri ). Let us assume that in each oomain f& a functiou 
Vi (x) E G2j (4) exists and possesses in this domain the Properties A through D, III 
rhe domain 52~ we select sets .liTril Ha*, Hsss 

Theorem 1.3. If for some ri we can f&d a &I ( rfr such that the set (x : 
1 x If < 61) C Hz* u H:, then there exist in the domain Qi bounded solutions of 
the system (1.2), which are distinct from the trivial solution. 

Proof, By Property C and the de~nition of the set H8i the distance p (Hai, 
): i) > 0. Therefore, an arbitrary trajectory, starting from the sphere I} x I< 6,, re- 
mains, as a consequence of Lemma 1.2, in the sphere [ x i < ri for all t > to. 

The following obvious theorem is a consequence of Theorem I+ 3, 
Theorem 1.4, If the conditions of Theorem 1.3 are satisfied for arbitrary Q 

from some value onward, it follows that the trivial solution of the system (X.2) is stable. 
Theorem 1. 5, If for some ri the origin is a limit point of the set Hz*, then the 

trivial solution of the system (1.2) is uustable~ 
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Pro o f. By virtue of Lemma 1.2 and the definition of a limit point, we can find, in 
an arbitrarily small neighborhood of the origin, a point through which the trajectory x(t) 

passes and reaches a sphere of radius ri in a finite time ; this corresponds to the insm- 
bility in Liapunov sense. 

Theorem 1.5 is a particular case of a theorem of Matrosov (see [3], Thearem 3.2). 
The set H, is, as a consequence of Lemma 1.2, an invariant set (see [4] ) of the system 
(1.2). With the help of the function V (x) we can construct a topological picture ofthe 
distribution of the set H, in 52 ; this sometimes enables us to obtain information on the 

behavior of the trajectories of the system (1.2). Thus, for example, if for n = 2 there 

is in the domain B a connected component K of the set Hs, topologically equivalent 
to a circle and consisting of ordinary points of the system (1.2). then K may turn out to, 

be a limit cycle. The possibility of using the function V (x) to investigate systems of 

differential equations qualitatively was first pointed out by Nemytskii [53. 

2. We now pave the existence of a function I’ (x) E C(') (52) and possessing the 
Properties A through D. Following [6, 73, we denote 

U"j'(X) = h*(X) hj (X), 
m ah, (4 bi (X) = 2 - 
j=l azj hj(x) 

c = - k, Vsi = 8V (x) / &I+:,, Vrtzj = a2V (x) / dsq%cj 

with the undestanding that repeated indices i and i represent summations from 1 to m. 

Property B can then be written as follows: 

L (V) 3 &v ZiZj + bV,, + cv = 0 (2.1) 

where L is a second order linear differential operator. All principal minors of the mat- 

rix 
hr2 (x1 h, (x>&(x) - - - - h, (~)hm @I 

h,(x)&(x) he2 (x) . . . . . . h2(x)h, (x) 

lla”j (4 lllrn = . . . . . . . . . . . . . . . . . * . 

hm (x)h~ (x) h, (4 h2 (4 - - - - La (4 

are nonnegative in Q ; therefore, the quadratic form aJZiZj is nonnegative in 51 [8] 

and the operator L is a degenerate elliptic operator in Q [S, 71. 
Associating the Property C with (2.1). we obtain the first boundary value problem 

for the operator L 
L (V) = 0, x E Q; v (x) = g, x E z (2. a 

For the proof of the existence of a solution V (x) of the boundary value problem (2.2) 
and a study of its properties, we introduce the following additional notation, adopted in 

C6. 71: 
n (x) = (n,, n21 - . *, %n) 

2,” = {x: aiin,nj = 0}, b (x) = (bi - ay+zi (x E 2”) 

2, = {x: b (x) = 0}, 2, = {x: b (x) > 0) 

2, = {x: b (x) < 0}, 2, = 2 \ 2” 

G = (2, U 2,) \ (L’o U W 
E = {x: det 1 dj (x) Ilm = 0) n (!A IJ 2) 
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Bs, = c + @ (m; I; bki; azgsj) 

Sl = ($9 5743 f - -7 St), Si = $7 2, . . ., m, I > 1 

where n (x) is the inner normal vector to 2 . An expanded expression for Bq was 
given in [6, 7~. Let CA ($2) denote the space of functions which have in Q bounded 
generalized derfxatives to order k inclusive, and let IVr,(‘) be a Sobolev space [Sj. Let 

L* (V) = aiiVrirj + b*Tsi + c*V 

b*’ = 2agi - b’, c* = aziXi - bf + c 

where L* is the operator conjugate to L , Obviously, for the case in question. 

z, = z, z, = &=&=~“=G=@, E=&-JU 2 

Definition. We say that a function V (x), bounded and measurable in D , is a 
generalized solution of the boundary value problem 

L (V) = Q, (x), x E Q; V(x) = y (x), x E &? u & 

if for an arbitrary function 8 E C@) (!J U X) and equal to zero on Z, U Xs the 
following integral identity is satisfied : 

(2.3) 

d f dv z aii cos (n, xi) d / dxi 

where @ and Y are bounded measurable functions and do is an element of area of 2: 
[6, 71. For the case considered here the formula (2.3) takes the form 

(2*4) 

Theorem 2.1. If the following conditions are satisfied in D : (1) f (x) E 
C(4+a) (D) ; (2) the constant c is sufficiently large in absolute value so that the inequa- 
lities q2 ( 0, c* ( 0 and BE < 0 hold ; then a function V(x) E CW (Q) exists 
and possesses the Properties A through D, 

Proof. It was noted above that c (: 0 and G has measure zero on 2. In addition, 
it follows from the formulation of the boundary value problem (2.2) that g = const 
on 2,. Therefme, by virtue of a theorem proved in [6] (Theorem l), there exists in $2 
a generalized solution V (x) of the boundary value problem (2. Z), satisfying the maxi- 
mum principle 1 V (x) 1 < g. This proves the Property D, 

We Prove now that the solution V (x) is unique. Let V, (x) be a solution of the prob- 
lem (2.2) distinct from V (x). We denote 9 (x) = V (x) - V, (x), and consider the 
boundary value problem 

L w = 0, x E S-2; 1c, (x) zzz 0, x E -sJ (2.5) 

As a consequence of Theorem 2 in 161, there exists in Q a generalized solution q (x) 
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of the problem (2.5) belonging to L, (Q), From Eq. (2.4) we have 

s 9L’ (43) dx = 0 
n 

(2.6) 

Since c* < 0 and the condition (2.6) is satisfied, the boundary value problem (2.5) 
satisfies the conditions of Theorem 3 of [6], by virtue of which 4 (I) = 0 almost eve- 
rywhere in 51 ( * ). Uniqueness of the solution of V (x) then follows from this. 

It remains to prove smoothness of the function Y (x). For this we introduce the auxi- 
liary fusion U (x> = Tr (x) - g q and we consider the madam value problem 

L(U) = cg, xEz52; V(x) = 0, XE r, (2.7) 

We continue the coefficient c of the operator L as a constant from 51 onto D. From 
the condition 1 of Theorem 2.1 and formula (1.3) it follows that rte (xf E C(*) (D). 
Therefore, u*j (x), b* (x) 6Z C(s) (D) , and, by virtue of the properties of the generali- 
zed derivatives, aif (x), @ (x> e Ca {L)) f9J. In addition Bs~ < 0. Then the gene- 
ralized solution U (x) of problem (2.7) and, consequently, of V (xf belong to Cs (9) 
(see @], theorem 9). From the properties of the Lebesgue integral it follows from the 
assertion v (x) E C, (Sz) that ir fx) E W$$::, (52). Applying Sobolev’s im~dd~g 
theorem [9] to V (x) we find that V (x) E C(t) (Q) ; this proves the smoothness of the 
function V (x) . 

Using Green’s formula for the operator L fr] 

and substituting into it the expression (2,4) and also the equations @ = 0, V = g on 
2 = Xs, we obtain 

(2.8) 

Since 8 is an arbitrary smooth function not identically zero in Q, and the operator 
L (v) is continuous In 51 as a function of x, then it follows from (2.8) by the funda- 
mental lemma of the calculus of variations that L (V) = 0 in 52. We have thus proved 

the Property B. A proof of Property C is not necessary since its satisfaction was stfpulated 
beforehand in the formulation of the boundary value problem (2.2). Property A is obvi- 
ous since h (0) = 0 and, from the relation (2.1). it follows that V (0) = 0. This com- 
pletes the proof of the theorem. 

S , Thus, in studying a specific system of equations of a perturbed motion x’= f (u) , 
it is necessary to construct the auxiliary system of equations x‘ = h (x) in accordance 
with the famula (1.3). For the auxiliary system we then pose the boundary value prob- 
lem (2.2)” where the number g > 0 is chosen arbitrarily and where r must be such 
that D will contain the phase space domain of interest for the system studied. The 
solution of the boundary value problem can be obtained by numerical methods with the 
aid of a computer [ 19~. Knowing the function V (x) , and having constructed the func- 

* ) In the theorem used here there is the additional requirement that boundary points for 
2, be limit points for the internal points of C 0 ; certain conditions on the structure of the 
set f; are also imposed. It can be shown that in case x, = B these requirements are su- 
perfluous‘ 
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tions P, (x) and P_ (x) in the domain a , we can determine the topological picture 
of the distribution of the sets H,, Ha, H, in Sz , and, in accordance with the Theorems 
1.1, 1.4 and 1.5, we can classify the stability of the trivial solution of the system(l.2). 
Lemma 1.1 makes it possible to carry over this classification to the system (1.1). 

The author thanks V. V. Rumiantsev for his interest to this paper. 
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We consider almost linear symmetric hyperbolic systems with constant coeffici- 
ents in the linear part and with nonlinear terms chaining a small parameter. 
The asymptotic method used here for construction of approximate solutions is 
based on the work of Bogoliubov and Miaopol’skii [ 11, and has been applied to 
systems with a single independent spatial variable yZ, 31. Along with a slow time 
we introduce slow coordinates. For the approximate solution we obtain, not an 
infinite system as in 141, but a finite system of almost linear partial differential 
equations with constant coefficients, a system which is simpler than the original 
one, We present an algorithm for obtaining approximate solutions. We alsoshow 


